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A FINITE ELEMENT APPROXIMATION FOR THE
ANALYSIS OF THIN SHELLS

RAY W. CLOUGH and C. PHILIP JOHNSON

University of California, Berkeley

AbstrllCt-An approximate numerical analysis procedure is presented which is capable of solving thin shells
of arbitrary shape, boundary conditions and loading. The shell is idealized as an assemblage of triangular finite
elements representing both membrane and flexural stiffness properties, and the solution is carried out by digital
computer. Five examples are presented which demonstrate the versatility of the procedure in treating different
shell configurations, as well as the accuracy of the results which may be obtained.

INTRODUCTION

THE widespread use of thin shell structures has created a need for a systematic method of
analysis which can adequately account for arbitrary geometric form and boundary condi­
tions, as well as arbitrary general types of loading. Classical mathematical solutions have
serious limitations in practice because unusual geometries or boundary conditions lead
to prohibitive complexities in their differential equations ofequilibrium. Various numerical
procedures have been formulated to deal with special geometric shapes, such as shallow
translational shells for example, but generally these are severely limited in applicability.

The purpose of this paper is to describe a numerical shell analysis procedure which
avoids all such limitations. It is as effective in treating arbitrary free form surfaces as it is
with the simplest geometric shapes. Any types or distributions of applied loadings may be
considered, no limitations are imposed with regard to the boundary conditions, and the
shell properties may vary in any specified fashion from one portion ofthe surface to another.

The solution presented herein is based on the finite element method, a technique
which was first applied to the solution of plane stress problems [1] and which subsequently
has been extended to analysis of axi-symmetric solids and plate bending problems [2],
and to axi-symmetric shells [3]. The procedure also has been used previously in thin shell
analysis, to a limited extent [4,5].

The basic concept of the finite element procedure is the idealization of the actual
continuum as an assemblage of discrete structural elements. In the present shell analysis
program, the arbitrary shell surface is approximated by a system of triangular flat plate
elements, the corner (or nodal) points of which lie on the mid-surface of the actual smoothly
curved shell. The solution requires first the evaluation of the stiffness properties of the
individual elements; the stiffness properties of the complete assemblage are then derived
by superposition of the element stiffness. Finally, the analysis of the shell is accomplished
by simultaneous solution of the discrete nodal point equilibrium equations for the nodal
displacements.

It is important to note that the finite element idealization of the shell introduces two
forms of approximation into the analysis. First, the set of flat triangular plate "facets"
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provides only an approximation to the smoothly curved surface of the actual shell. Thus
the shell which is analyzed differs slightly from the actual shell. Second, the stiffness pro­
perties of the individual elements are derived on the basis of an assumed set of displacement
patterns within the elements; thus constraints are imposed on the manner of deformation
of the shell. However, the errors associated with both types of approximation tend to
diminish with reduced mesh sizes in the finite element idealization, and the results of the
examples presented in this paper demonstrate that excellent solutions can be obtained with
reasonable mesh refinements.

THE FINITE ELEMENT IDEALIZATION

A finite element idealization of a typical shell surface is shown in Fig. 1. The actual
smoothly curved surface is approximated by the assemblage of flat, triangular plate ele­
ments. The proportions of the elements are arbitrary; they are defined by the coordinates
of the nodal points which lie in the mid-surface of the actual shell.

z

IDEALIZED SHELL

TYPICAL ELEMENT

STRESS RESULTANTS MOMENT RESULTANTS

FIG. 1. Typical finile element idealization.

The most critical step in the finite elements analysis is the evaluation of the stiffness
properties of the individual elements. It is assumed that the elements are interconnected
only at their corner points, thus the element stiffness represents the forces at these nodal
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points resulting from unit displacement of the nodal points. Two types of element stiffness
are considered in the shell analysis: membrane stiffness which relates forces and displace­
ments in the plane of the elements, and plate bending stiffness which takes account of
displacements and rotations out of the element plane. Because the element is a flat plate,
there is no coupling between these types of element stiffness properties; therefore it was
possible to use a standard plane stress element to represent the membrane stiffness of the
shell [IJ, and a standard plate bending element to represent its flexural stiffness [6].

Because the use of both of these finite element systems has been described in previous
publications. it will not be necessary to discuss their derivation in detail here. However.
a few comments may be useful to the reader who is unfamiliar with the finite element
method. As was mentioned above. the analysis of the element stiffness properties is based
upon a set of assumed displacement functions which define the deformations permitted
within the element. In general, if these displacement functions are selected so that they
maintain full compatibility of displacements along the edges of adjacent elements, and if
they also contain the rigid body displacements and uniform stress states of the element.
then the solutions provided by the finite element idealization will converge toward the true
solution as the element mesh is refined.

MEMBRANE DISPLACEMENT FUNCTIONS

MEMBRANE ELEMENT

PLATE DISPLACEMENT FUNCTIONS

PLATE ELEMENT

FIG. 2. Membrane and plate element.

Typical membrane and plate bending elements are shown in Fig. 2, together with the
displacement functions assumed in evaluating their stiffness matrices. The membrane
element has two degrees offreedom at each nodal point, and the displacements are assumed
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to vary linearly between the nodal points [1]. It is evident that such displacement patterns
will provide full compatibility for a system of elements lying in a plane. The plate bending
element has three degrees of freedom at each nodal point (two rotations and the normal
translation), thus a total of 9 independent displacement functions should be specified.
In this case, however, in order to develop displacement functions which maintain full
compatibility along the edges, it was necessary to divide the plate into three subelements and
assume nine displacement functions in each subelement. These twenty-seven displacement
shapes were then reduced to nine independent patterns by applying internal compatibility
constrains between the subelements [6]. In this idealization the transverse displacements,
W, vary as cubic functions within the element.

The analysis of the element stiffness properties from any given set of displacement
functions may be carried out by a standard sequence of matrix operations [2]. The result
for a membrane element may be expressed as:

{~} ~[K'Jm} (I)

where for a typical node "i" (see Fig. 2):

{P~} {Vi}li~ = P~ and V~ = Vi .

Similarly, the stiffness of a plate bending element is:

{ P~} {V~}
:~ = [K

p
] ~

where for node "i" (Fig. 2)

(2)

(3)

(4)

The complete membJ:ane plus flexural stiffness of the element, therefore, may be expressed
symbolically as:

(5)

wherein the element is assumed to have a total of 15 degrees offreedom, five at each nodal
point.

It should be noted that the displacement functions assumed in defining these element
stiffness properties will not, in general, satisfy displacement compatibility conditions
between adjacent elements of a shell idealization. The displacements were chosen to main­
tain compatibility of both membrane and flexural displacements in finite element
idealizations ofany plane system. However, when the elements do not lie in the same plane,
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the plate bending deformations produce membrane type discontinuities of a form which
cannot be corrected by the membrane displacements. Fortunately, this type of discrepancy
diminishes with decreasing mesh size (i.e. as the elements tend to be more nearly co-planar)
and appears to have no significant adverse effect on the solution.

FORMING THE ELEMENT ASSEMBLAGE

The stiffness matrix of the complete element assemblage may be determined most
conveniently by the direct stiffness procedure. To accomplish this, it is necessary first to
transform the stiffness matrices for the individual elements to a common coordinate
system, called herein the base coordinates; then the stiffness of the assemblage is obtained
merely by adding together the appropriate components of the element stiffness matrices.

In the analysis of shell structures, it is convenient to employ two different types of
coordinate systems in establishing the base coordinates: a fixed set of Cartesian coordin­
ates (x, y, z) which are called the global coordinates, and surface coordinates (~1' ~2' ~3)

in which ~3 is taken normal to the shell surface at every point. In addition, the individual
element properties are defined initially in terms of the element coordinate system (x, ji, z)
specified for each element. All of these coordinate systems are shown in Fig. 1.

The transformations from element and surface coordinates to global coordinates may
be expressed as:

or

Q = if Ii and Q = T~P~

(6)

(7)

where Q, Ii, P~ represent similar force quantities expressed in global coordinates, element
coordinates, and surface coordinates respectively; and T and T~ represent the usual
direction cosines. By equating these two expressions (equation 7), the transformation from
element coordinates to surface coordinates may be obtained:

(8)

The matrices (T, T~, T~) define all the necessary transformations for force and dis­
placement quantities, provided no constraints are placed on these quantities. However,
in the stiffness matrix defined for each element only two rotational degrees of freedom are
considered at each node. Accordingly, only two rotational degrees of freedom per nodal
point were included in the base system describing the assembled structure. These are
referred to the surface coordinates ~1 and ~2' The third rotation quantity, about ~3' was
neglected because for a good mesh representation each triangle associated with a given
node will lie close to the tangent plane of the node. It was assumed that rotation about
the normal to the tangent plane would be negligible in the actual shell and results from
numerous examples have verified this assumption. The moment transformation of the two
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rotational degrees of freedom which are considered is:

(9)

where Tc is the upper left 2 x 2 block of T~.

The transformation of the element stiffness to base coordinates for a typical element is
accomplished by rearranging equation (5) so that the five degrees offreedom at each corner
are grouped together:

(10)

where typical forces and displacements for node "i" are (see Fig. 2):

M~ e~x x

M~ e~y y

Ji= p~ and Vi = Vi (11 )x

p~ Vi
y

P~ .Wi

If global coordinates are used for the three linear displacements, then the appropriate
transformation matrix is:

T= (12)

where T~, T~, T: are transformations of the type of equation (9), defined at points i, j, and
k respectively. Then the transformed element stiffness, k, expressed in the base coordinates
is given by:

(13)

where K represents the element stiffness expressed in its element coordinates. It is to be
emphasized that the base coordinates defined here are global coordinates for the trans­
lational degrees of freedom, but are surface coordinates for the rotational degrees of
freedom, and that only two rotational degrees of freedom are included (the membrane
rotation about the normal being set equal to zero).

In the finite element analysis ofany shell, the stiffness ofeach element in the idealization
is transformed to the common base coordinate system as shown in equation (13). The
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contribution of each element may then be added directly into the (base coordinate) stiff­
ness matrix K of the complete structure, as indicated in Fig. 3.

::Jj::: ::: :::~
k--{l kki kkj kkk~

(15 x 15)

ELEMENT STIFFNESS

i k

IDEALIZED SHELL

5

CONTRIBUTION OF ONE ELEMENT

TO TOTAL STIFFNESS

FIG. 3. Direct stiffness formulation of the structure stiffness matrix.

SOLUTION OF THE EQUILIBRIUM EQUATIONS

The stiffness matrix K of the finite element idealization serves to relate the nodal loads
R acting on the shell to the resulting nodal displacements v:

Kv = R. (14)

In its initial formulation, K contains five degrees of freedom for each nodal point in the
element assemblage. Before equation (14) may be solved, however, the boundary conditions
of the shell must be recognized. This may be accomplished conveniently by striking out
the rows and columns of the degrees of freedom associated with the boundary constraints
and by replacing the corresponding diagonal term with a non-zero value. The constraints
may be applied in arbitrary combinations of the five degrees of freedom considered at
each nodal point. No consideration is given to the rotation about the normal.
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The load vector R in equation (14) represents the values of the force components
applied at the nodes of the assembled structure. These may be applied arbitrarily, but they
usually include only linear forces. The nodal forces resulting from distributed loads generally
are computed from simple tributary area considerations.

The stiffness matrix K ofequation (14) may be characterized, in general, as (1) symmetric,
(2) banded, (3) positive definite, (4) sparsely populated. Algorithms which utilize either
iterative methods or direct methods for the solution of equations with these properties
are well known. A direct method (triangular decomposition) was used to obtain the results
presented herein; therefore, a brief discussion of the above properties related to this pro­
cedure is pertinent.

The first three properties are very significant when related to the direct solution of
large systems of equations. Symmetry permits a reduction of approximately one half in
the number of calculations. The banding property permits one to consider only the co­
efficients contained within the band width since it is preserved during the solution. The
positive definite property insures stability of the solution; hence, the solution may be
obtained without pivoting. These properties thus enable one to obtain a direct solution
by keeping only a small portion of the stiffness matrix in high speed memory at any time,
while sequentially retrieving and storing additional information by means of relatively
slow input-output devices such as tapes and disks. The portion of the stiffness matrix
required to be in core at any time during the solution determines how large the band width
can be. The minimum storage required is m(m + 1)/2 where m is the half band width, and
this requires retrieving and storing information in blocks of m numbers. For a 32K core
the maximum half band width permitted is approximately 200. If larger blocks of informa­
tion are to be used for input-output, then the band width must be reduced.

A typical triangle element mesh (8 x 12) suitable for analysis of a cylindrical shell, for
example, and a schematic diagram of the assembled element stiffness matrix are shown in
Fig. 4. Since each node has five degrees of freedom, the total number of unknowns, n, is
585. The half band width, m, is 50. To obtain the half band width the entire array of ele­
ments is scanned and the maximum difference between the numbers of any two nodes
associated with a particular triangle is recorded. The half band width is then given by one
plus this number multiplied by five. The shaded zones in the stiffness matrix indicate the
maximum horizontal spread of the non-zero coefficients. It is interesting to note that if this
mesh were subdivided to 16 x 24 subdivisions, each shaded area would retain the same
width while the half band width would be increased to 90. Unfortunately, this type of
sparseness does not permit a reduction in computational effort. The number of multi­
plications required to decompose the structure stiffness matrix is approximately nm2/2.
The number of additions are also approximately nm2 /2. Typical times, in seconds, required
for the decomposition and the back substitution for problems which have been run on
the IBM 7094 are:

Mesh m n Decomposition Back
substitutions

4x5 30 150 5 3
8 x 12 50 585 37 18

12 x 18 70 1235 159 44
16 x 22 90 1955 340 77
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The algorithm used to solve these equations is written in FORTRAN IV, using disk
storage for the back substitutions.

18 108 117
9"""""""""'1I:---,~",,,-K---I~~-r--,,.-~""'K"''''

8k-+-'k~~"k-~~~lk-~~~'k-+~

7k-T;-Jt~:lk-~......Jij~lk-~~r---:l'k-~~

6k-+-'k~r-"k-...JIIr-~~lk-~~~'Ir-+~

!l r--Jllr-~--Jllr---;:lI.-~

.. r--'Jik--'k--Jllr---;:lI.--lIr-i

3k-+-'k~r-"k-~~~lk-~""""~1k-+~

2r--~-'k~r---;:lIr-...JIIr--JoI'---::IIIr-~~~'Ir-+~

TYPICAL MESH

N:585 ------I

TOTAL STIFFNESS

FIG. 4. Banding property of typical stiffness matrix.

The solution of the equilibrium equations yields the displacement components of the
nodal points of the finite element system. From these nodal displacements, it is a relatively
simple matter to determine the element deformations inasmuch as the element displace­
ments are limited to the assumed patterns. Thus the stresses in each element also may be
determined from the nodal displacements, by taking account of the material stress-strain
properties. In general, the stresses in adjacent elements will not be found to be continuous.
Even if no displacement discontinuities were present it should be evident that the assumed
displacement patterns cannot insure local stress equilibrium acrOss the element boundaries
(although the gross equilibrium of the system is satisfied by the nodal forces). In the present
program a weighted averaging process has been used to determine stress values at the nodal
points from the stresses in all the elements surrounding each nodal point.
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RESULTS OF ANALYSIS

In order to demonstrate the capability and versatility of this finite element shell analysis
procedure, analyses have been made of a wide range of thin shell systems involving many
different forms of shell geometry and boundary conditions. Because of space limitations
only a few examples of smoothly curved shell surfaces will be discussed here. Results
have been obtained in each case for all displacement and stress components. but only
selected typical data will be presented. Comparisons with results obtained by other analy­
tical procedures are included for each case.

Spherical dome (Examples 1 and 2)

The first case to be considered is the spherical dome subjected to external pressure
loading which is shown in Fig. 5. Because of its axial symmetry, it was possible to treat a
single segment of this system in the finite element idealization. A 30° segment of the sphere
was considered. and the element nodes were located on parallel arcs at meridional angle
intervals of 2·5 degrees-making a total of 14 arcs over the full 35 degree meridional angle.

x

z

COORDINATE SYSTEM

E'I0
7
PSi

V'I/6

PRESSURE LOAD ( I psi)

MEMBRANE CONDITION (EX. I)

CLAMPED CONDITION(EX.2)

FIG. 5. Axisymmetric spherical dome (Examples 1 and 2).

Two cases were considered for this shell: Example 1 was supported on rollers at the
boundary so as to maintain a membrane state of stress, while Example 2 was clamped at
the edge. Results of Example 1 agreed almost exactly with the membrane theory-dis­
placements were correct to three significant figures at all nodes and stresses were well
within one percent of the theoretical values. The meridional moment and hoop stresses
determined for the clamped case (Example 2) are shown in Fig. 6, in comparison with
"exact" results for this case, taken from Ref. [7]. The slight deviation of the finite element
results which may be noted near the clamped edge could have been reduced by refining
the mesh in this region.

Circular cylinder (Example 3)

The second form of shell to be discussed is a circular cylinder, loaded by its own dead
weight, supported by diaphragms at the ends, and free along the sides. Because of its
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double symmetry only one-quarter of this shell was considered in the analysis, as shown in
Fig. 7. The end diaphragm was assumed to be infinitely rigid in its own plane and infinitely
flexible out of that plane.
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FIG. 6. Sphere with clamped edge (Example 2).
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FIG. 7. Circular cylinder (Example 3).
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Four different mesh sizes were considered in this analysis in order to demonstrate the
convergence of results toward the correct values. Vertical displacements (<5,) across the
mid-section, determined for the four different meshes, are presented in Fig. 8. Also shown is
the "exact" result computed by numerical evaluation of the Donnel-Jenkins shell equation
[8]. The displacements are seen to have the correct form in each analysis, but the finest
mesh was required to provide essential convergence to the true results. The results obtained
from the fine mesh analysis for the longitudinal displacements at the end diaphragm

{
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FIG. 8. Circular cylinder (Example 3), vertical displacement at central section, Y = O.
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FIG. 9. Circular cylinder (Example 3), longitudinal displacement at diaphragm, Y = L.
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FIG. 10. Circular cylinder (Example 3).

and for two of the stress components are presented in Figs. 9 and 10, respectively. In addi­
tion, three components of bending moment are shown in Fig. 11. Agreement with the
Donnel-Jenkins shell theory results is seen to be good in all figures, but complete conver­
gence apparently has not yet been achieved.

Translational shells (Example 4)
In this example, three different forms ofshells are considered and compared: a parabolic

cylinder (PC), an elliptic paraboloid (EP, positive Gaussian curvature), and a hyperbolic
paraboloid (HP, negative Gaussian curvature) as shown in Fig. 12. Each shell has the same
transverse parabolic profile and is supported at the ends by a diaphragm normal to the shell
surface, while the longitudinal edges are free. Loading of each shell is due to its own dead
weight.

Certain results of the finite element analyses are presented in Fig. 13 in comparison with
the numerical analysis results presented in Ref. [9]. Uniform rectangular mesh layouts
(12 x 18 mesh for the first two shell types, 8 x 12 mesh for the hyperbolic paraboloid)
were used in the analyses with dimensions as shown on the figure. The finite element results
for the parabolic cylinder are seen to check well with those given in the reference. The agree­
ment of the longitudinal stresses for the hyperbolic paraboloid also is seen to be excellent,
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FIG. 11. Circular cylinder (Example 3).
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FIG. 12. Translational shells (Example 4).



A finite element approximation for the analysis of thin shells 57

200

z

i

100
N2·I<IP/FT.

LONGITUDINAL STRESS

-, ""...
(,f;JN

-2

---+x
I

18"10"

VERTICAL DISPLACEMENT

TRANSVERSE MOMENT

-------

o

I
o

G EPt-o PC FINITE ELEMENT
A HP

-EP~
---- PC REF.9
_.- HP

FIG. 13. Translation shells (Example 4), comparison of results at central section Y = o.

although the vertical displacements and transverse moments for this shell show some slight
deviations. This discrepancy is not significant, however, inasmuch as the values are so
small.

The greatest discrepancies are found in the case of the elliptic paraboloid. Even in this
case, the deviations are not severe, and may be explained in part by the fact that a slightly
different structure was considered in Ref. [9]. The shallow shell theory used in that analysis
required that the longitudinal profile be assumed in the form of a circular arc while the
finite element analysis took account of the true parabolic profile.

Prellur. Lood 1601b/l12)
E=5.62 x 10'p'i
.=0.15

D= e'

IZ= (Y+L-l)(I-4X2/D2 )f/L I

FIG. 14. Conoid (Example 5).
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Conoid (Example 5)

The conoidal shell, shown in Fig. 14, is supported on all four sides by diaphragms
normal to the shell surface, and is subjected to an external pressure load. Only half the shell
was treated in the analysis, due to symmetry, using a uniform 12 x 18 rectangular mesh
(referred to the horizontal plane).

The normal displacement components and transverse moments computed by the finite
element procedure are shown in Fig. 15, while two in-plane stress components are shown in
Fig. 16. Also shown are some results derived from shallow shell theory which were presented
in Ref. [10]. The general form of the two sets of results is in agreement, but significant
differences in magnitude are evident. In this case, it is believed that the finite element results
are the more reliable because this shell has a significantly greater rise than would be per­
mitted by shallow shell theory.

CONCLUSIONS

The examples presented herein demonstrate the versatility of the finite element pro­
cedure in treating shells of arbitrary configuration. Assemblages of triangular elements
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FIG. IS. Conoid (Example 5).
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FIG. 16. Conoid (Example 5).

can be established to approximate any surface form, and the mesh size can be varied con­
veniently so that small elements may be utilized in regions of sharp curvature together
with larger elements in flatter portions of the shell. It is important to note that the discrete
element idealization also permits the analysis of shells of varying thickness or having
variations in any of the material properties. The idealization considered here assumes all
properties to be constant within each element, but they may change arbitrarily from element
to element. Moreover, it is not difficult to account for orthotropic material properties in
the element stiffness analysis, rather than isotropic properties such as were considered
in these examples.

The results ofthe examples considered herein are seen to represent good approximations
to the exact solutions derived byother procedures in the caseswhere such solutions are avail­
able, and the analysis of the cylindrical shell demonstrates the convergence of the process
as the finite element mesh is refined. Thus it seems reasonable to conclude that equivalent
accuracy and convergence properties would be obtained in the analysis of other shell
configurations. At present no means is available for evaluating quantitatively the error
which may result from the physical approximation of the shell; i.e., the substitution of a
system of flat plate "facets" for a smoothly curved surface. On the other hand, the use of
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assumed displacement functions in the analysis ofthe element stiffness properties is merely a
special form of Rayleigh-Ritz analysis, and conclusions regarding the convergence of that
process are applicable to the finite element procedure iffull compatibility can be maintained
in the assumed displacement functions.

As a final comment it is worth noting that further developments may be made in the
finite element analysis of shells. Work is under way at the present time directed toward the
derivation of more refined planar elements which can represent more complex stress dis­
tributions within the elements, as well as singly and doubly curved elements which may
provide better approximations to the geometry of the given shell.
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Afic.TpaKT-npIIBOi:\IITCli rrpll6JllIlKeHHblil: 'iIlCJleHHblil: MeTOi:\, BeCbMa rrpHrOi:\Hblil: i:\Jlll paC'ieTa TOHKIIX
o60JlO'l.eK rrpOIl3BOJlbHoil: IjIOPMbl, rrpOH3BOJlbHbiX rpaHII'iHbiX YCJlOBIlil: H Harpy3KH. 060JlO'l.Ka Hi:\eanllp­
H3yeTcli B Blli:\e cOBoKyrrHocTII KOHe'iHbIX TpexyrOJlbHblX 3JleMeHTOB, o6Jlai:\alOll\x MeM6paHHblM COCTOllH­
lIeM a TaKlKe lKecTKOCTblO Ha 113r1l6. PeweHlle rrOJlY'iaeTCli HCrrOJlb3Yll C'ieTHble MaWHHbI. npIIBOi:\IITCli
IIlITb rrpHMepoB, KOTopble YKa3YlOT MHorOCTopOHHOCTb MeTOi:\a paC'ieTa rrpH o6pa6oTKe pa3HbiX O'iepTaHIlil:
o60JlO'l.eK, KaK II TO'l.HOCTb rrOJlY'leHblX pe3YJlbTaToB.


